What do you miss most about fieldwork?

As time slips by during the seemingly endless coronavirus pandemic, my plans for fieldwork keep changing. Even in a normal year, fieldwork can be unpredictable. However, when social distancing rules are in effect and uncertainty about how long this could last keeps growing, fieldwork plans may not even have a chance.

At the beginning of the pandemic, the small window of time I had during the cormorant breeding season to conduct my field study still seemed far away. But as cities stayed closed and travel remained risky, that small window approached. If I walk through my neighbourhood down to the shoreline of Lake Ontario, I can see an island where cormorants nest. Through binoculars, I’ve watched the cormorants arrive on the island and build their nests. Although the island is too far away to see any details, as the parents sit on their nests more consistently, I can only assume they are incubating eggs. I’m happy for the birds, but I am also watching the opportune window of time for my fieldwork plans slip away.

However, while I am frustrated, researchers are used to coming up with plan B (and C, D, etc.)! For now, I am fortunate to be able to use the time to work on results from my last field season.

But as I look back through my data, I keep thinking about everything I miss about fieldwork – and I’m guessing that I’m not alone. So we asked field biologists on Twitter what they missed most about fieldwork. You can check out the full conversation here, but here’s a summary of what we’ve been hearing:

  • Surprisingly, the things that bug you the most when you’re in the thick of it (such as early mornings and the sights and smells of a seabird colony) turn out to be the things you miss the most.

 

  • Your field crew really does become your field family, through all of your experiences together  (including getting a positive response from saying “poop!” and competitions running through sagebrush).

 

 

 

 

 

  • The idea of being unplugged and outside – and everyone else you know understanding why.

 

 

 

  • Enjoying the little things after a hard day’s work (like being covered in dirt and the best tasting ice cream).

 

 

 

 

 

 

  • The cool questions we get to ask and try to answer in limited amounts of time.

 

 

 

 

 

 

Reading all the responses we got really solidified the reasons why we love fieldwork. In these times of uncertainty, what we all keep hearing is true – we really are all in this together! So feel free to keep sharing what you miss most about fieldwork and let us know if you want to share a fieldwork story on the blog. We are always looking for guest posts!

How do you solve a problem like migration?

This post was initially published on the Science Borealis blog on April 27th, 2020. Check out their blog for more great science stories, published every Monday!

An ornithological pedicure: taking a claw clipping from a western bluebird for stable isotope analysis. Photo credit: Catherine Dale.

I can feel the rapid thrumming of the bluebird’s heart against my palm as I carefully manoeuvre its foot into position over a tiny Ziploc bag. I pick up my nail scissors and take a deep breath to steady my hand. I will only get one chance to make sure the miniscule claw clipping lands in the bag. If it doesn’t, I will have no chance of finding it…and no way to discover where this bird spent the winter.

Field biology often requires unusual skills. I have spent the last decade becoming an experienced bird pedicurist, because analyzing the chemical composition of tissues like claws and feathers is one method scientists use to determine the movements of migratory animals.

Unfortunately, this method suffers from the same drawback as many others: a lack of precision. As a result, many aspects of bird migration remain a mystery. But this spring, researchers at the Max Planck Institute of Animal Behaviour in Germany are entering the final testing phase of a new space-based tracking system, which they hope will revolutionize our understanding of animal movement.

The puzzle of migration

For Canadians across the country, the return of our migratory birds marks the beginning of spring. Each year, 2.6 billion birds cross the Canada-U.S. border, heading north to their breeding grounds.

Two thousand years ago, Aristotle believed the spring reappearance of barn swallows meant they were emerging from their winter hibernation at the bottom of ponds. Although we now understand more about animal migration, many questions remain – largely because it’s very difficult to track individual animals as they travel vast distances around the globe.

For many years, the only approach was to mark animals with bands or tags in the hopes of re-sighting them somewhere else. But the sheer number of animals that migrate makes seeing a marked individual again extremely unlikely.

A flock of shorebirds takes to the air at Oak/Plum Lake Important Bird Area, a migration stopover site in Manitoba. The mixed-species flock includes Wilson’s phalaropes, red-necked phalaropes, stilt sandpipers, pectoral sandpipers, dunlin, white-rumped sandpipers, and semipalmated sandpipers. Photo credit: Christian Artuso.

Putting the pieces together

In the 1990s, migration research took a leap forward when scientists realized the chemical composition of animal tissue reflected the place where it was grown. By analyzing the ratio of various isotopes in tissue (termed stable isotope analysis), researchers can roughly reconstruct an animal’s geographic history…which is why I found myself giving bluebird pedicures.

Scientists can also now track moving animals directly by fitting them with tags that record location. These tags can be divided into two broad categories. Archival tags, such as geolocators, record and store movement information. In order to find out where a tagged animal has been, researchers must recapture it and retrieve the tag.

Recapturing migratory animals often proves difficult, especially as many fail to return from migration. So when possible, researchers prefer to use tags that remotely transmit data to a receiver, eliminating the need to recover them.

But transmitting tags face a fundamental constraint: transmitting takes power, and the more power a tag requires, the larger it needs to be. Tags must weigh less than 5% of an animal’s body weight to avoid affecting its behaviour or survival. Considering that many migratory birds weigh less than 10 grams, making tags small enough for them to carry is a huge challenge.

A sanderling carrying a Motus nanotag. The tag’s long antenna is easily visible. Photo credit: Jessica Howell.

The amount of power required to transmit data depends largely on where the receivers are. Tags for ground-based tracking systems – with receivers located on the Earth’s surface – can be very small. For example, the nanotags used by the Motus Wildlife Tracking System range from 0.2 to 2.6 grams, and can even be carried by some large insects. However, the range over which ground-based systems can track individuals is limited. Animals carrying Motus tags can only be detected within approximately 15 km of a receiver.

In contrast, satellite tags send data to receivers on orbiting satellites. They can track movement at a much larger scale than ground-based systems, and have been used for years on big animals, such as seabirds and caribou. But most satellite tags are too heavy for small migratory birds.

The Icarus Initiative

In 2007, Martin Wikelski, the Director of the Max Planck Institute of Animal Behaviour in Germany, proposed a novel space-based system for tracking animals across the globe.

It took more than 10 years, and the cooperation of the Russian Space Agency (Roskosmos) and the German Aerospace Centre (DLR), for the system to become a reality. In March 2020, the International Cooperation for Animal Research Using Space (Icarus) entered its final testing phase. The first Icarus tags are waiting to be shipped to researchers, and the system will be available to the scientific community this fall.

“We wanted to build [a tracking system] specifically for wildlife,” Wikelski says of Icarus. “It’s built by the community, for the community.”

The International Space Station, pictured here in 2009 after a visit by the space shuttle Discovery to add additional solar panels. Photo credit: STS-119 Shuttle Crew and NASA.

Icarus tackles the trade-off between tag size and transmission distance in part by the simple expedient of moving the receiver closer. Conventional satellite tags transmit their data to Argos satellites, which orbit the poles at an altitude of 850 km. Icarus tags will transmit their data to a receiver on the International Space Station (ISS), orbiting at an average altitude of 400 km.

Data collected by Icarus will be stored in Movebank, a free online database accessible by the public.  The system will also incorporate a citizen science initiative: Animal Tracker. While Icarus tags tell scientists where an animal is, citizen scientists can provide information about what it’s doing there. Using the Animal Tracker app, people can follow tagged animals online, and anyone who spots those animals in the wild can submit their observations to the database.

Of course, like any tracking system, Icarus will have some limitations, at least initially. The first tags will weigh five grams, which – while smaller than many satellite tags – is still too heavy for most migratory birds. However, the design of a new generation of tags weighing only one gram is already underway.

Satellite coverage will also be an issue. The receiver on the ISS will be able to pick up signals from most of the Earth’s surface; however, high latitude regions in the north and south will not be covered. Eventually, Wikelski’s goal is to deploy dedicated Icarus satellites strategically to cover the entire globe.

But even with these limitations, scientists are eager to begin harnessing the power of Icarus to tackle some of the unsolved mysteries of migration. Dr. Kevin Fraser, an Assistant Professor in the Department of Biological Sciences at the University of Manitoba, is keenly awaiting his first shipment of tags. He and his graduate students plan to put them on saw-whet owls – and they are most interested in the birds that don’t come back in the spring.

Banding a saw-whet owl. Kevin Fraser’s lab hopes to use Icarus tags to track these small owls during migration. Photo credit: Kevin Fraser.

Fraser’s previous research has largely depended on archival tags, meaning tagged birds must be recaptured to determine where they went. Individuals that don’t return to the study sites to breed – those that die along the way, or the young birds that disperse to breed elsewhere – are lost data.

“Most of what we know about migration, we know from birds that have successfully migrated,” Fraser says. “We know much less about where survival might be limited, or what the juveniles are doing. But [with Icarus], for the first time, we will be able to track 100 gram birds (the smallest yet) in near real-time, without the bias of only focusing on survivors and adults.”

Solving the puzzle

With the sliver of claw safely stowed in a bag for later analysis, I’m ready to liberate my captive bluebird. I position its feet over my empty hand and release my hold. For a moment, it perches on my palm, apparently unaware of its freedom…then, in a flutter of wings, it’s gone.

Of the 450 bird species found in Canada, 78% spend at least part of the year outside our borders. This fall, four billion birds will cross our southern border to spend the winter in warmer climes. More than a billion of them will not return, succumbing to the dangers of the journey or the hazards of their wintering grounds.

Icarus offers us a unique window into the world of migratory birds, and a chance to improve their odds. If we know where they go and how they get there, we can begin to understand the perils they face – and perhaps develop solutions.

I’m late for a very important date!

I don’t like to be late. I am the kind of person who arrives extra early to the airport just in case I can’t find the gate or I get stuck in security. If I am late for whatever reason, I feel incredibly anxious. So when my time at a field site is limited by the arrival and departure of a pre-scheduled boat, this is all amplified.

When we arrived at Bonaventure Island with our research permit, the staff members reminded us of our agreement: “You can join us on the employee boat. It is the first boat to depart for the island in the morning and the last boat to depart for home in the evening.” Great! We wanted to spend as much time as possible on the island, collecting data on the northern gannet colony there.

Sarah carrying equipmentIt is easy to lose track of time when I am sampling during fieldwork. I get really focused on the task at hand, on how many birds I have sampled already and how many I still have to do. The time ends up passing at a very variable rate; sometimes really fast, and sometimes really slow. One day we were so focused on sampling that we did lose track of time – a big problem when you’re on an island and the only mode of transportation to your cabin is a boat about to depart.

Sometime after lunch, absorbed in our work, we heard someone shouting and rustling through the bushes. We looked up to see a colleague running over to us, saying “It’s time to go! We are late!”. We finished processing the bird in hand and started to pack up as fast as possible. But it still took a good 5 minutes to get all our equipment and samples ready to go. Within that time, a park staff member came barreling down the narrow path on a four-wheeler to meet us. “Come and hop on, the boat is going to leave!”. I looked at this four-wheeler with two seats in the front and a small flatbed in the back and wondered how 6 adults were going to fit on it.

the treachorous pathSomehow, we all made it into the vehicle (or in my case, half in; the other half was hanging through the door frame) and started the trek towards the boat. In a previous blog, I talked about the difficult, steep hike up to the colony. Now, we were 6 people crammed into a four-wheeler, flying back down this same path. Our route was mined with potholes the size of large buckets and tree roots lying in crisscross patterns across the path. This did not make for a smooth ride! I clutched the handle with all my strength as we tipped from side to side without slowing down, really pushing the four-wheeler to its limit.

boat at the dockLuckily, we did make it to the boat in one piece prior to its departure, and except for a few hungry staff members, no harm was done. But I didn’t want to make any more staff members angry with us, so I vowed that we would keep better track of time the next day. The only problem was that I was wearing a really old watch, (because no one with any sense wears anything nice to a seabird colony) and I didn’t trust the time on it.

Sometime after lunch, I checked the time. My watch said 3:30 pm. Just to double check, I looked at my phone. It said 4:30 pm. I panicked: “Oh no, my watch must have frozen, we have to go!”.

a no walking sign in front of the colonyAt top speed, we packed all of our gear up and headed towards the main lodge…only to find everyone still working. Unbeknownst to me, my phone had switched to the Atlantic time zone of 1 hour ahead! My unreliable watch was right: it was actually only 3:30 pm, meaning we still had lots of time to sample. Of course, now we were all packed up and ready to go. But luckily for us, there were a few birds nesting near the main lodge that we could process to pass the time. And we were not late for the boat!

Battle scars

It will come as no surprise to anyone familiar with the academic world that academics don’t always agree. In fact, they often engage in fierce and lengthy disagreements about topics that never cross the minds of 99% of the world’s population.

These disagreements are the foundation of good science. Good science happens when smart people with different ideas engage with each other and find ways to test those ideas. However, if you’re a field assistant for one of those smart people, those disagreements can also be a pain in the ass.

An argument between two scientists is exactly how I ended up crouching in the middle of a patch of poison oak in the California hills, my fingers stuffed in my ears, tensed in anticipation of a shotgun blast. (But it’s not quite as bad as it sounds – I promise no scientists were harmed in the making of this blog post!)

At the time, I was working in California for a professor who had been studying acorn woodpeckers for many years. Acorn woodpeckers, as their name suggests, depend heavily on acorns. In fact, groups of these birds create ‘granaries’ by drilling holes in trees (or anything else, including people’s houses) and stuffing those holes full of acorns for later consumption.

Given the tight ties between the woodpeckers and their food source, it made sense that the professor I worked for was interested not just in the birds, but also in the oak trees they relied on – in figuring out the details of how and when they produced their acorns. And this was the source of the argument I found myself in the middle of.

My boss had gotten into a disagreement with another scientist about how far oak pollen could travel. The question was whether oak trees could be pollinated only by other oaks within a relatively small radius (roughly a kilometre), or whether the pollen could travel much longer distances. The funny thing is, I honestly can’t remember which side of the disagreement my boss was on; all I know is that he had decided he was going to settle the question once and for all. How, you might ask? Well, that’s where the shotgun came in.

The logical thing to do, he had decided, was pick a focal oak tree and take a leaf sample from every other oak within a 1 km radius. Then he could sample the focal tree’s acorns and try to match them to DNA from the leaves of the putative fathers – a plant paternity test.  If he found that at least some of the acorns did not belong to any of the trees he had sampled, he would have evidence that pollen could travel farther than a kilometre.

However, this plan turned out to be anything but simple in its execution. First of all, the field station was surrounded by oak savannah.  By definition, there were a *lot* of oak trees around. Sampling every oak within a kilometre of the chosen focal tree was not a trivial task.

The landscape around the field station: rolling hills covered with – you guessed it – oaks.

Second, many of those oaks were located in…inconvenient…places, such as at the top of steep hills, the bottom of ravines, and often, the middle of large patches of poison oak. Closely related to poison ivy, poison oak is – as its name suggests – a plant better avoided. Its leaves are covered in urushiol, an oil which causes an allergic reaction in the majority of people who come into contact with it. My boss informed me that he was in the lucky minority that did not react to it. Never having encountered poison oak before this field job, I didn’t know which camp I fell into, but I wasn’t really interested in finding out the hard way.

Third, most of the oaks we wanted to sample were beautiful, stately, tall old trees. Their height was obviously an advantage when it came to spreading pollen – but a substantial disadvantage when it came to getting a DNA sample.  Plucking a leaf from a 25 m tall tree is easier said than done…which brings us back to the shotgun.

If we were unable to reach a tree’s leaves, my boss’ plan was simply to shoot a twig off. Then the twig and its attached leaves would float down to the ground, allowing us to waltz over and pick up the sample with minimal effort.

Presumably several potential flaws in this plan are obvious to many of you.  But for me, the main problem wasn’t my boss’ aim (as you might think) – but rather the noise associated with shooting our samples down. As someone with a phobia of sudden loud noises (it’s a thing, really!), I can’t even be in the same room as a balloon…so shotgun blasts are well outside of my comfort level.

Eventually, my boss and I worked out a routine. After hiking, scrambling, or clawing our way up (or down) to the tree we were trying to sample, we would circle it (often wading through swaths of poison oak) to look for any leaves within reach. If we didn’t find any, he would get out the shotgun and start sizing up targets, while I would retreat, crouch on the ground, stuff my fingers as far as possible into my ears, and wait for the bang.

By the time we wrapped up at the end of the day, my ears were ringing and my fingers hurt from spending a substantial portion of the day crammed into my ears. Shortly after getting home, I discovered that yes, indeed, I did react to poison oak.

And to this day, I still don’t know how far oak pollen can travel.

One of the oak trees that gave us so much trouble...

One of our oak ‘victims’

The power to teach and the right to learn

Last summer, something unbelievable happened to me. While attending the final banquet of an ornithology conference, I won the raffle prize. Now, if you’re like me, winning anything is already a pretty amazing stroke of luck. But this wasn’t just any raffle prize: I won a 3-week cruise to Antarctica. Honestly, it felt like my life’s entire allotment of luck, all in one fell swoop.

It was so phenomenally fortunate, in fact, that I told myself not to believe it was going to happen until I actually set foot on the ship. But when the RCGS Resolute pulled away from dock in Buenos Aires October 2019, I officially gave myself permission to get excited.

Boarding the Resolute by the light of a Buenos Aires sunset.

However, during the first two days on board, I felt faintly perturbed by something I couldn’t quite put my finger on. It wasn’t until I went to an on-board seminar, where one of the staff members told us about her role in a massive conservation initiative to eliminate rats from South Georgia Island, that I realized what was bothering me. It felt very strange to be just another audience member at a wildlife seminar…travelling to a remote, inaccessible place as a tourist, rather than a field biologist.

Of course, as it turned out, I wasn’t going to Antarctica in either capacity. Our cruise made headlines when it was cancelled only a few days into the trip, stranding all 140 of us passengers in Argentina.

I’m not going to lie; it was pretty devastating. Not just the stress and expense of changing travel plans, but also letting go of all that excitement I’d just given myself permission to feel…not to mention the dream of going to Antarctica. I can’t claim that seeing Antarctica had been a long-term goal of mine: in fact, if I hadn’t won the prize, it would never have entered my head, for the simple reason that the trip was far, far beyond my means. But now that it had been dangled in front of me and then snatched away, I wanted desperately to go.

The one faint hope was the replacement cruise the company offered as compensation for our disastrous trip. But given that the cancellation of our voyage was a result of the company’s financial troubles, the chances that this second cruise would ever materialize were…slim at best.

After we returned to Canada, all communication from the company stopped. My e-mails went unreturned; no one picked up the phone at the office. Left completely in the dark, I couldn’t stop myself from obsessively searching the news for stories about the situation. It was like probing a sore tooth with your tongue – painful but strangely addictive. And there were plenty of stories to feed the addiction.

But then I made the mistake of scrolling past the end of a story, all the way down to the infamous ‘Comments’ section of the CBC website. (If you’re not familiar with CBC news stories, my advice is to avoid the comments entirely…unless you feel the need to work up a good rage.) And I came across this comment: “Cancelling the trip works better for the penguins and the environment.”

My first response, I have to admit, was visceral fury at the commenter’s cavalier disregard of what had been a painful experience for everyone onboard the Resolute. But I couldn’t deny that she had a point. Cruises are not particularly environmentally friendly. Antarctic cruises, in fact, are often extremely environmentally unfriendly. They produce high greenhouse gas emissions, may lead to pollution and waste on land and in the water, and bring human disturbance to some of the last remaining undisturbed places on Earth.

To be fair, some cruise operators take steps to minimize their impact on the fragile Antarctic ecosystem. Many of them are members of the International Association of Antarctica Tour Operators, an organization which promotes environmentally responsible travel among its members.  Cruise operators also often try to offset the negative effects of Antarctic travel by claiming that tourists will go on to be “ambassadors” and conservation champions for the places they’ve had the privilege to see. However, evidence doesn’t necessarily support that claim.

So on the face of it, the answer seems simple – maybe no one should be going on cruises to the Antarctic, or other remote, vulnerable places. But that raises an important question: who does get to see these places?

The Dispatches website features a quote from David Quammen: “Landscapes have the power to teach, if you query them carefully. And remote landscapes teach the rarest, quietest lessons.” One of the reasons we started this blog is to share the lessons we’ve learned travelling to these remote landscapes.

But the truth is, nothing can beat a personal experience.  And when it comes to conservation, it’s hard to ask people to care about things they haven’t seen or experienced themselves. No matter how good March of the Penguins is, it can’t compare to seeing emperor penguins in the flesh.  And once you’ve seen one, I have to believe that what happens to the species becomes more important to you.

The Resolute heads for home, trailed by shearwaters and petrels.

Patrolling for pufflings

The prisoner looks up at us from his metal enclosure.  Huddled in a corner, he freezes against the wall, hoping we haven’t seen him.  But as the beam of our flashlight comes to rest on him, he’s gone.  With a flip of his wings, he dives beneath the surface of the shallow pool, disappearing into the shadows of the enclosure.

“Well, crap,” says one of my companions.  “He’s not going to be easy to rescue.”

***

When my friend asked me if I wanted to join her doing Puffin Patrol, it sounded almost too fantastic to be real.  But it is: run by the Newfoundland and Labrador Chapter of the Canadian Parks and Wilderness Society, Puffin and Petrel Patrol is a program that provides an extra helping hand to newly fledged seabirds which have lost their way.

The program takes place in the communities surrounding the Witless Bay Ecological Reserve.  The reserve is home to the largest breeding colony of Atlantic puffins in North America, and the second-largest colony of Leach’s storm petrels in the world.

This is what the word ‘puffling’ conjures for me…

The puffins (and petrels) nest in burrows on islands close to shore.  They lay only one egg, and after it hatches, the puffling remains in the burrow for 6-7 weeks.  (Can we just pause here to enjoy the fact that baby puffins are called pufflings?  Whenever I hear that word, I immediately picture the tribbles from Star Trek…)

The trouble starts when it’s time for the pufflings to leave the burrow.  They fledge at night, giving them protection from predators as they first venture into the outside world.  For centuries, pufflings have emerged from their burrows in the dark and followed the light of the moon and stars out to sea.

But growing development along the coast poses a problem for the fledglings.  An increase in the number of houses and businesses also means an increase in artificial light.  More and more, pufflings are being drawn towards the streetlights, headlights, and house lights that illuminate the shoreline.  Many of these confused travellers land on dark streets, and fall victim to traffic mishaps.  Even those that avoid this fate are unlikely to make it back to sea without help.

This is where the Puffin Patrol comes in.  Every night during the fledging season (mid-August to early September), volunteers armed with butterfly nets patrol the streets of the coastal towns near the ecological reserve.  When they find a stranded puffling, it is scooped up in a net and placed into a plastic bin to await release the next morning.

Releases are sometimes done from a boat, but also frequently occur on the beach – and they gather quite a crowd.  While biologists weigh and measure the birds, and fit them with a band to allow for identification if they’re ever recaptured, CPAWS takes the opportunity to tell the watching group a bit about puffins.

Watching  a freshly released puffling make his way out to sea.

So not only does the Puffin and Petrel Patrol help two species of birds, both designated as vulnerable by the IUCN, it’s also a great outreach tool.  In addition to the public releases, locals and visitors alike can volunteer to be patrollers, providing they sign up in advance.  Since its inception in 2004, the program has attracted hundreds of volunteers, and has captured the imagination of Canadians across the country: to date, it’s been the subject of a picture book and the focus of an episode of The Nature of Things.

***

It’s a foggy, cool night in mid-August, and my first time out on patrol.  As I don a fluorescent safety vest and arm band reading “Puffin Patrol”, it feels a bit surreal that we’re going to spend the next few hours wandering around in the dark looking for stranded pufflings.  Only in Newfoundland.

At first it’s a fairly quiet night, with only a few teams reporting puffling encounters, and I start to think that maybe our services aren’t needed.  But as we make the rounds of a local fish plant, my friend shines her flashlight into the flat-bottomed barge used to take waste offshore for disposal.  There’s a shallow pool of water at the bottom – and there, pressed into a corner, is my first puffling.

As soon as the light hits him, he dives under the surface, eventually reappearing on the far side of the enclosure.  The barge is several feet below us as we stand on the dock, and we realize quickly that to get him out of his prison, we’re going to need a longer net.

As we turn to leave, we come face to face with another puffling, only a few feet away, looking for all the world like he wants to know what we’re up to.  As we stare at him, he begins sidling towards the edge of the dock and the barge – until my friend makes a sudden, heroic lunge with the net.  One puffling trapped on the barge is more than enough to deal with.

Up close and personal: a puffling being banded prior to release.

We stow our captive safely in a plastic bin and take him to Puffin Patrol headquarters, then return to the first puffling to see what we can do.  But even with a longer net, as soon as we come anywhere close, he disappears under the water and pops up at the other end of the barge.  We can only access the end closest to us, so we are forced to wait for him to come back within reach.  At one point, we actually do get him in the net – but as we lift it towards the dock, he jumps right back out.

It’s getting late and we’re all tired and frustrated…but we persevere.  We’re not leaving the puffling to die if we can help it.  It’s well after 1 a.m. when we get him in the net again.  This time we take no chances, holding the open end carefully against the side of the barge as we lift the net, giving the puffling no chance to escape.

And then he’s in our (gloved) hands, looking none too pleased with us as we place him into his plastic bin.  But that’s okay.  We’re pretty pleased with ourselves, because we know that tomorrow morning he’ll be going in the right direction, headed back out to sea.

4 reasons I shouldn’t be a field biologist

My lungs are bursting as I stumble to a halt, slipping on melting snow crystals.  Squinting against the glare, I lift my head – and immediately wish I hadn’t.  Behind me, a vertigo-inducing slope of snow drops away.  In front of me, the sight is even worse: the slope continues up…up…up.  At the top, four figures stand waiting impatiently.  It’s clear that I’m hopelessly outclassed. As I force myself to start climbing again, I can’t help but wonder: is it too late for a career change?

***

I guess I should back up and explain how I got myself into this situation.  When I finished my PhD, I had a singular goal: I wanted to continue doing fieldwork and research.  So when Bird Studies Canada offered me a job coordinating Newfoundland’s first Breeding Bird Atlas, it seemed like the perfect opportunity.

Breeding Bird Atlases (BBAs) are ambitious projects that aim to map the distribution and abundance of all birds breeding in a province or state over a 5-year period.  Every Canadian province except Newfoundland has (or is in the midst of producing) at least one BBA.  The end product allows us to better understand the health and distribution of bird populations and can be used as a tool for conservation planning.

Most atlas data is collected by volunteer citizen scientists, making atlases a great forum for community engagement.  But once in a while, the coordinator is lucky enough to get out into the field too.  And when the opportunity presented itself to do some pilot surveys in the remote regions of Gros Morne National Park…how could I say no?

A rainbow stretches across the green hills of Gros Morne.

A rainbow stretches across the green hills of Gros Morne.

I drove into Gros Morne under a spectacular rainbow, arcing across hills and lakes of the park.  It seemed like a good omen.  And although a few days of weather delays frayed our patience a bit, finally the skies cleared and we climbed into a helicopter for our flight to the top of Big Level, one of the highest points in the park.  As we swooped over Western Brook Pond, Gros Morne’s famous freshwater fjord, I couldn’t wait to get started.

We descended into an alien landscape: the arctic-alpine habitat found in only few places in Newfoundland.  For a few hours, we wandered under the widest blue sky imaginable, exclaiming when we crossed paths with an enormous arctic hare and enjoying the silvery sound of horned lark song.

The wide blue skies and open spaces of the arctic-alpine habitat on top of Big Level.

The wide blue skies and open spaces of the arctic-alpine habitat on top of Big Level.

But then we started our hike towards the cabin where we’d be staying the next few nights.  And once we were on the move, the evidence that I was way out of my depth accumulated rapidly.

Pausing to take a picture is a great excuse to catch your breath an on strenuous hike…

I’m a fairly active person, and I thought I was in reasonable shape…until I spent a day trailing four people (all with a distinct resemblance to gazelles) across tundra, snow, and bogs.  As the warthog among gazelles, I was also the most likely to plunge without warning through the crust of snow we were walking on, landing with a thump in whatever was below.  With each minute, I lagged farther and farther behind.

My problems were compounded by my short legs and terrible balance, which resulted in me frequently tripping over rocks, trees, and my own feet – not to mention being unable to cross many of the streams my gazelle companions leapt over easily.

Reasons #1 and 2: Warthogs aren’t made for long-distance hikes involving lots of climbs.  Short legs and poor balance don’t help either.

By the time we made it to the cabin – after a solid eight hours of hiking – I was beyond done.  I collapsed on the cabin deck, and I might still be there, if some kind soul hadn’t provided incentive to get up in the form of a cold beer.

I told myself the next morning would be a fresh start.  But when the alarm sounded at 4:30 and I rolled my aching body out of bed, I realized I had overlooked another reason I’m not cut out to be field biologist – or at least an ornithologist.

Reason #3: As documented in previous posts, I’m very much not a morning person.

But birds start the day early, so we had to as well.  Our plan was to conduct 8 to 10 point counts each morning.  A point count involves standing in one place for a set amount of time (in this case, 5 minutes), and documenting every bird seen or heard.  Sounds straightforward, right?  But because birds are more often heard than seen, point counts require sharp ears and an encyclopedic knowledge of bird song.

As we climbed a steep hill to our first point, all I could hear was my own panting.  I managed to catch my breath when we stopped to conduct the count…only to become aware of yet another problem.

Reason #4: I don’t know enough bird songs.

I could recognize some of what we heard, but definitely not all of it.  I especially struggled with the partial songs and quiet ‘chip’ notes that were often all we heard.  Luckily I was with several spectacularly talented birders, who were more than capable of conducting the counts.  But after a few days in the field, I was feeling pretty discouraged.

And then on our last day, we came across a(nother) sound I hadn’t heard before: a single repetitive note, like the alarm on a tiny car.  We tracked the sound to a nearby conifer.  Perched at the very top, staggering as the tree swayed, was a greater yellowlegs.

Shorebird in trees look undeniably ridiculous.  Gawky and awkward, the yellowlegs scrabbled constantly for balance as it fought to stay on its perch.  It was impossible to watch without laughing…and I began to feel better.

A greater yellowlegs perches at the very top of a conifer.

Some birds just aren’t meant to perch in trees. But this greater yellowlegs isn’t letting that bother him.

Shorebirds aren’t built to perch at the top of trees, but the yellowlegs was there anyway.  And now that my first atlassing excursion is over, I’ve reached a conclusion.  Maybe I’m not naturally suited to this job.  It certainly doesn’t always come easily to me.  But the things I don’t know, I can learn; the things I struggle with, I’ll improve at with practice.  What matters is to be out there trying.

It’s true there are many reasons I’m not cut out to be a field biologist…but there’s one reason I am: doing this job makes me feel alive.  And for me, that cancels out everything else.